Sistema de refrigeración Google DeepMind AI: cómo la inteligencia artificial revoluciona la eficiencia energética de los centros de datos
Google DeepMind consigue un -40% de energía de refrigeración en centros de datos (pero solo un -4% de consumo total, ya que la refrigeración es el 10% del total) y una precisión del 99,6% con un error del 0,4% en PUE 1,1 mediante aprendizaje profundo de 5 capas, 50 nodos, 19 variables de entrada en 184.435 muestras de entrenamiento (2 años de datos). Confirmado en 3 instalaciones: Singapur (primer despliegue en 2016), Eemshaven, Council Bluffs (inversión de 5.000 millones de dólares). PUE Google en toda la flota: 1,09 frente a la media del sector: 1,56-1,58. El control predictivo por modelos predice la temperatura/presión de la hora siguiente gestionando simultáneamente las cargas de TI, la meteorología y el estado de los equipos. Seguridad garantizada: verificación en dos niveles, los operadores siempre pueden desactivar la IA. Limitaciones críticas: ninguna verificación independiente de empresas de auditoría/laboratorios nacionales, cada centro de datos requiere un modelo personalizado (8 años sin comercializarse). La implantación, de 6 a 18 meses, requiere un equipo multidisciplinar (ciencia de datos, climatización, gestión de instalaciones). Aplicable más allá de los centros de datos: plantas industriales, hospitales, centros comerciales, oficinas corporativas. 2024-2025: Google pasa a la refrigeración líquida directa para TPU v5p, lo que indica los límites prácticos Optimización de IA.