Recursos para el crecimiento empresarial

9 de noviembre de 2025

Sistema de refrigeración Google DeepMind AI: cómo la inteligencia artificial revoluciona la eficiencia energética de los centros de datos

Google DeepMind consigue un -40% de energía de refrigeración en centros de datos (pero solo un -4% de consumo total, ya que la refrigeración es el 10% del total) y una precisión del 99,6% con un error del 0,4% en PUE 1,1 mediante aprendizaje profundo de 5 capas, 50 nodos, 19 variables de entrada en 184.435 muestras de entrenamiento (2 años de datos). Confirmado en 3 instalaciones: Singapur (primer despliegue en 2016), Eemshaven, Council Bluffs (inversión de 5.000 millones de dólares). PUE Google en toda la flota: 1,09 frente a la media del sector: 1,56-1,58. El control predictivo por modelos predice la temperatura/presión de la hora siguiente gestionando simultáneamente las cargas de TI, la meteorología y el estado de los equipos. Seguridad garantizada: verificación en dos niveles, los operadores siempre pueden desactivar la IA. Limitaciones críticas: ninguna verificación independiente de empresas de auditoría/laboratorios nacionales, cada centro de datos requiere un modelo personalizado (8 años sin comercializarse). La implantación, de 6 a 18 meses, requiere un equipo multidisciplinar (ciencia de datos, climatización, gestión de instalaciones). Aplicable más allá de los centros de datos: plantas industriales, hospitales, centros comerciales, oficinas corporativas. 2024-2025: Google pasa a la refrigeración líquida directa para TPU v5p, lo que indica los límites prácticos Optimización de IA.
9 de noviembre de 2025

Regulación de la IA para aplicaciones de consumo: cómo prepararse para la nueva normativa de 2025

2025 marca el final de la era del "Salvaje Oeste" de la IA: AI Act EU operativa a partir de agosto de 2024 con obligaciones de alfabetización en IA a partir del 2 de febrero de 2025, gobernanza y GPAI a partir del 2 de agosto. California es pionera con el SB 243 (nacido tras el suicidio de Sewell Setzer, una niña de 14 años que entabló una relación emocional con un chatbot), que impone la prohibición de sistemas de recompensa compulsiva, detección de ideación suicida, recordatorio cada 3 horas de "no soy humano", auditorías públicas independientes, sanciones de 1.000 dólares por infracción. SB 420 exige evaluaciones de impacto para "decisiones automatizadas de alto riesgo" con derechos de apelación de revisión humana. Cumplimiento real: Noom citada en 2022 por bots que se hacían pasar por entrenadores humanos, acuerdo de 56 millones de dólares. Tendencia nacional: Alabama, Hawai, Illinois, Maine, Massachusetts clasifican la falta de notificación de los chatbots de IA como infracción de la UDAP. Enfoque de tres niveles de sistemas de riesgo crítico (sanidad/transporte/energía) certificación previa al despliegue, divulgación transparente de cara al consumidor, registro de uso general+pruebas de seguridad. Mosaico normativo sin prioridad federal: las empresas de varios estados deben navegar por requisitos variables. UE a partir de agosto de 2026: informar a los usuarios de la interacción con la IA a menos que sea obvio, etiquetar el contenido generado por la IA como legible por máquina.
9 de noviembre de 2025

Regular lo que no se crea: ¿corre Europa el riesgo de la irrelevancia tecnológica?

Europa atrae sólo una décima parte de la inversión mundial en inteligencia artificial, pero pretende dictar las normas mundiales. Este es el "efecto Bruselas": imponer normas a escala planetaria mediante el poder de mercado sin impulsar la innovación. La Ley de Inteligencia Artificial entra en vigor de forma escalonada hasta 2027, pero las multinacionales tecnológicas responden con creativas estrategias de evasión: invocando secretos comerciales para evitar revelar datos de entrenamiento, elaborando resúmenes técnicamente conformes pero incomprensibles, utilizando la autoevaluación para rebajar los sistemas de "alto riesgo" a "riesgo mínimo", forum shopping eligiendo Estados miembros con controles menos estrictos. La paradoja de los derechos de autor extraterritoriales: la UE exige que OpenAI cumpla las leyes europeas incluso para la formación fuera de Europa, un principio nunca visto en el derecho internacional. Surge el "modelo dual": versiones europeas limitadas frente a versiones globales avanzadas de los mismos productos de IA. Riesgo real: Europa se convierte en una "fortaleza digital" aislada de la innovación global, con los ciudadanos europeos accediendo a tecnologías inferiores. El Tribunal de Justicia en el caso de la puntuación crediticia ya ha rechazado la defensa de los "secretos comerciales", pero la incertidumbre interpretativa sigue siendo enorme: ¿qué significa exactamente "resumen suficientemente detallado"? Nadie lo sabe. Última pregunta sin respuesta: ¿está la UE creando una tercera vía ética entre el capitalismo estadounidense y el control estatal chino, o simplemente exportando burocracia a un ámbito en el que no compite? Por ahora: líder mundial en regulación de la IA, marginal en su desarrollo. Amplio programa.
9 de noviembre de 2025

La revolución de la inteligencia artificial: la transformación fundamental de la publicidad

El 71% de los consumidores espera personalización, pero el 76% se frustra cuando sale mal: bienvenidos a la paradoja de la publicidad de IA que genera 740 000 millones de dólares anuales (2025). DCO (Dynamic Creative Optimisation) ofrece resultados verificables: +35% de CTR, +50% de tasa de conversión, -30% de CAC probando automáticamente miles de variaciones creativas. Caso práctico de un minorista de moda: 2.500 combinaciones (50 imágenes×10 titulares×5 CTA) servidas por microsegmento = +127% ROAS en 3 meses. Pero las limitaciones estructurales son devastadoras: el problema del arranque en frío requiere de 2 a 4 semanas y miles de impresiones para la optimización, el 68% de los profesionales del marketing no entienden las decisiones de puja de la IA, la caducidad de las cookies (Safari ya, Chrome 2024-2025) obliga a replantearse la segmentación. Hoja de ruta: 6 meses: base con auditoría de datos + KPI específicos ("reducir el CAC del 25% del segmento X", no "aumentar las ventas"), presupuesto piloto del 10-20% para pruebas A/B de IA frente a manual, escala del 60-80% con DCO multicanal. Tensión crítica por la privacidad: 79% de usuarios preocupados por la recopilación de datos, fatiga publicitaria -60% de compromiso tras más de 5 exposiciones. Futuro sin cookies: segmentación contextual 2.0, análisis semántico en tiempo real, datos de origen a través de CDP, aprendizaje federado para la personalización sin seguimiento individual.